Copied to
clipboard

G = C23.49D28order 448 = 26·7

20th non-split extension by C23 of D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.49D28, C4○D286C4, D2818(C2×C4), C28.419(C2×D4), (C2×C4).154D28, (C2×C8).190D14, (C2×C28).175D4, C2.D5640C2, C4.39(D14⋊C4), Dic1417(C2×C4), C2.5(C8⋊D14), (C2×M4(2))⋊13D7, C22.58(C2×D28), C28.44D440C2, C14.21(C8⋊C22), C28.28(C22⋊C4), (C14×M4(2))⋊21C2, (C2×C56).320C22, C28.116(C22×C4), (C2×C28).774C23, C22.3(D14⋊C4), C2.5(C8.D14), (C22×C14).102D4, (C22×C4).141D14, C74(C23.36D4), (C2×D28).201C22, C14.21(C8.C22), C4⋊Dic7.285C22, (C22×C28).190C22, (C2×Dic14).221C22, C4.74(C2×C4×D7), (C2×C4).54(C4×D7), (C2×C4⋊Dic7)⋊33C2, C2.32(C2×D14⋊C4), C4.112(C2×C7⋊D4), (C2×C28).110(C2×C4), (C2×C4○D28).13C2, (C2×C14).164(C2×D4), (C2×C4).78(C7⋊D4), C14.60(C2×C22⋊C4), (C2×C4).723(C22×D7), (C2×C14).22(C22⋊C4), SmallGroup(448,667)

Series: Derived Chief Lower central Upper central

C1C28 — C23.49D28
C1C7C14C28C2×C28C2×D28C2×C4○D28 — C23.49D28
C7C14C28 — C23.49D28
C1C22C22×C4C2×M4(2)

Generators and relations for C23.49D28
 G = < a,b,c,d,e | a2=b2=c2=1, d28=c, e2=cb=bc, ab=ba, dad-1=ac=ca, ae=ea, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd27 >

Subgroups: 868 in 162 conjugacy classes, 63 normal (29 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×C14, D4⋊C4, Q8⋊C4, C2×C4⋊C4, C2×M4(2), C2×C4○D4, C56, Dic14, Dic14, C4×D7, D28, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×C14, C23.36D4, C4⋊Dic7, C4⋊Dic7, C2×C56, C7×M4(2), C2×Dic14, C2×C4×D7, C2×D28, C4○D28, C4○D28, C22×Dic7, C2×C7⋊D4, C22×C28, C28.44D4, C2.D56, C2×C4⋊Dic7, C14×M4(2), C2×C4○D28, C23.49D28
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, D14, C2×C22⋊C4, C8⋊C22, C8.C22, C4×D7, D28, C7⋊D4, C22×D7, C23.36D4, D14⋊C4, C2×C4×D7, C2×D28, C2×C7⋊D4, C8⋊D14, C8.D14, C2×D14⋊C4, C23.49D28

Smallest permutation representation of C23.49D28
On 224 points
Generators in S224
(1 201)(2 174)(3 203)(4 176)(5 205)(6 178)(7 207)(8 180)(9 209)(10 182)(11 211)(12 184)(13 213)(14 186)(15 215)(16 188)(17 217)(18 190)(19 219)(20 192)(21 221)(22 194)(23 223)(24 196)(25 169)(26 198)(27 171)(28 200)(29 173)(30 202)(31 175)(32 204)(33 177)(34 206)(35 179)(36 208)(37 181)(38 210)(39 183)(40 212)(41 185)(42 214)(43 187)(44 216)(45 189)(46 218)(47 191)(48 220)(49 193)(50 222)(51 195)(52 224)(53 197)(54 170)(55 199)(56 172)(57 142)(58 115)(59 144)(60 117)(61 146)(62 119)(63 148)(64 121)(65 150)(66 123)(67 152)(68 125)(69 154)(70 127)(71 156)(72 129)(73 158)(74 131)(75 160)(76 133)(77 162)(78 135)(79 164)(80 137)(81 166)(82 139)(83 168)(84 141)(85 114)(86 143)(87 116)(88 145)(89 118)(90 147)(91 120)(92 149)(93 122)(94 151)(95 124)(96 153)(97 126)(98 155)(99 128)(100 157)(101 130)(102 159)(103 132)(104 161)(105 134)(106 163)(107 136)(108 165)(109 138)(110 167)(111 140)(112 113)
(1 201)(2 202)(3 203)(4 204)(5 205)(6 206)(7 207)(8 208)(9 209)(10 210)(11 211)(12 212)(13 213)(14 214)(15 215)(16 216)(17 217)(18 218)(19 219)(20 220)(21 221)(22 222)(23 223)(24 224)(25 169)(26 170)(27 171)(28 172)(29 173)(30 174)(31 175)(32 176)(33 177)(34 178)(35 179)(36 180)(37 181)(38 182)(39 183)(40 184)(41 185)(42 186)(43 187)(44 188)(45 189)(46 190)(47 191)(48 192)(49 193)(50 194)(51 195)(52 196)(53 197)(54 198)(55 199)(56 200)(57 142)(58 143)(59 144)(60 145)(61 146)(62 147)(63 148)(64 149)(65 150)(66 151)(67 152)(68 153)(69 154)(70 155)(71 156)(72 157)(73 158)(74 159)(75 160)(76 161)(77 162)(78 163)(79 164)(80 165)(81 166)(82 167)(83 168)(84 113)(85 114)(86 115)(87 116)(88 117)(89 118)(90 119)(91 120)(92 121)(93 122)(94 123)(95 124)(96 125)(97 126)(98 127)(99 128)(100 129)(101 130)(102 131)(103 132)(104 133)(105 134)(106 135)(107 136)(108 137)(109 138)(110 139)(111 140)(112 141)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)(121 149)(122 150)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)(131 159)(132 160)(133 161)(134 162)(135 163)(136 164)(137 165)(138 166)(139 167)(140 168)(169 197)(170 198)(171 199)(172 200)(173 201)(174 202)(175 203)(176 204)(177 205)(178 206)(179 207)(180 208)(181 209)(182 210)(183 211)(184 212)(185 213)(186 214)(187 215)(188 216)(189 217)(190 218)(191 219)(192 220)(193 221)(194 222)(195 223)(196 224)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 77 173 134)(2 133 174 76)(3 75 175 132)(4 131 176 74)(5 73 177 130)(6 129 178 72)(7 71 179 128)(8 127 180 70)(9 69 181 126)(10 125 182 68)(11 67 183 124)(12 123 184 66)(13 65 185 122)(14 121 186 64)(15 63 187 120)(16 119 188 62)(17 61 189 118)(18 117 190 60)(19 59 191 116)(20 115 192 58)(21 57 193 114)(22 113 194 112)(23 111 195 168)(24 167 196 110)(25 109 197 166)(26 165 198 108)(27 107 199 164)(28 163 200 106)(29 105 201 162)(30 161 202 104)(31 103 203 160)(32 159 204 102)(33 101 205 158)(34 157 206 100)(35 99 207 156)(36 155 208 98)(37 97 209 154)(38 153 210 96)(39 95 211 152)(40 151 212 94)(41 93 213 150)(42 149 214 92)(43 91 215 148)(44 147 216 90)(45 89 217 146)(46 145 218 88)(47 87 219 144)(48 143 220 86)(49 85 221 142)(50 141 222 84)(51 83 223 140)(52 139 224 82)(53 81 169 138)(54 137 170 80)(55 79 171 136)(56 135 172 78)

G:=sub<Sym(224)| (1,201)(2,174)(3,203)(4,176)(5,205)(6,178)(7,207)(8,180)(9,209)(10,182)(11,211)(12,184)(13,213)(14,186)(15,215)(16,188)(17,217)(18,190)(19,219)(20,192)(21,221)(22,194)(23,223)(24,196)(25,169)(26,198)(27,171)(28,200)(29,173)(30,202)(31,175)(32,204)(33,177)(34,206)(35,179)(36,208)(37,181)(38,210)(39,183)(40,212)(41,185)(42,214)(43,187)(44,216)(45,189)(46,218)(47,191)(48,220)(49,193)(50,222)(51,195)(52,224)(53,197)(54,170)(55,199)(56,172)(57,142)(58,115)(59,144)(60,117)(61,146)(62,119)(63,148)(64,121)(65,150)(66,123)(67,152)(68,125)(69,154)(70,127)(71,156)(72,129)(73,158)(74,131)(75,160)(76,133)(77,162)(78,135)(79,164)(80,137)(81,166)(82,139)(83,168)(84,141)(85,114)(86,143)(87,116)(88,145)(89,118)(90,147)(91,120)(92,149)(93,122)(94,151)(95,124)(96,153)(97,126)(98,155)(99,128)(100,157)(101,130)(102,159)(103,132)(104,161)(105,134)(106,163)(107,136)(108,165)(109,138)(110,167)(111,140)(112,113), (1,201)(2,202)(3,203)(4,204)(5,205)(6,206)(7,207)(8,208)(9,209)(10,210)(11,211)(12,212)(13,213)(14,214)(15,215)(16,216)(17,217)(18,218)(19,219)(20,220)(21,221)(22,222)(23,223)(24,224)(25,169)(26,170)(27,171)(28,172)(29,173)(30,174)(31,175)(32,176)(33,177)(34,178)(35,179)(36,180)(37,181)(38,182)(39,183)(40,184)(41,185)(42,186)(43,187)(44,188)(45,189)(46,190)(47,191)(48,192)(49,193)(50,194)(51,195)(52,196)(53,197)(54,198)(55,199)(56,200)(57,142)(58,143)(59,144)(60,145)(61,146)(62,147)(63,148)(64,149)(65,150)(66,151)(67,152)(68,153)(69,154)(70,155)(71,156)(72,157)(73,158)(74,159)(75,160)(76,161)(77,162)(78,163)(79,164)(80,165)(81,166)(82,167)(83,168)(84,113)(85,114)(86,115)(87,116)(88,117)(89,118)(90,119)(91,120)(92,121)(93,122)(94,123)(95,124)(96,125)(97,126)(98,127)(99,128)(100,129)(101,130)(102,131)(103,132)(104,133)(105,134)(106,135)(107,136)(108,137)(109,138)(110,139)(111,140)(112,141), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,77,173,134)(2,133,174,76)(3,75,175,132)(4,131,176,74)(5,73,177,130)(6,129,178,72)(7,71,179,128)(8,127,180,70)(9,69,181,126)(10,125,182,68)(11,67,183,124)(12,123,184,66)(13,65,185,122)(14,121,186,64)(15,63,187,120)(16,119,188,62)(17,61,189,118)(18,117,190,60)(19,59,191,116)(20,115,192,58)(21,57,193,114)(22,113,194,112)(23,111,195,168)(24,167,196,110)(25,109,197,166)(26,165,198,108)(27,107,199,164)(28,163,200,106)(29,105,201,162)(30,161,202,104)(31,103,203,160)(32,159,204,102)(33,101,205,158)(34,157,206,100)(35,99,207,156)(36,155,208,98)(37,97,209,154)(38,153,210,96)(39,95,211,152)(40,151,212,94)(41,93,213,150)(42,149,214,92)(43,91,215,148)(44,147,216,90)(45,89,217,146)(46,145,218,88)(47,87,219,144)(48,143,220,86)(49,85,221,142)(50,141,222,84)(51,83,223,140)(52,139,224,82)(53,81,169,138)(54,137,170,80)(55,79,171,136)(56,135,172,78)>;

G:=Group( (1,201)(2,174)(3,203)(4,176)(5,205)(6,178)(7,207)(8,180)(9,209)(10,182)(11,211)(12,184)(13,213)(14,186)(15,215)(16,188)(17,217)(18,190)(19,219)(20,192)(21,221)(22,194)(23,223)(24,196)(25,169)(26,198)(27,171)(28,200)(29,173)(30,202)(31,175)(32,204)(33,177)(34,206)(35,179)(36,208)(37,181)(38,210)(39,183)(40,212)(41,185)(42,214)(43,187)(44,216)(45,189)(46,218)(47,191)(48,220)(49,193)(50,222)(51,195)(52,224)(53,197)(54,170)(55,199)(56,172)(57,142)(58,115)(59,144)(60,117)(61,146)(62,119)(63,148)(64,121)(65,150)(66,123)(67,152)(68,125)(69,154)(70,127)(71,156)(72,129)(73,158)(74,131)(75,160)(76,133)(77,162)(78,135)(79,164)(80,137)(81,166)(82,139)(83,168)(84,141)(85,114)(86,143)(87,116)(88,145)(89,118)(90,147)(91,120)(92,149)(93,122)(94,151)(95,124)(96,153)(97,126)(98,155)(99,128)(100,157)(101,130)(102,159)(103,132)(104,161)(105,134)(106,163)(107,136)(108,165)(109,138)(110,167)(111,140)(112,113), (1,201)(2,202)(3,203)(4,204)(5,205)(6,206)(7,207)(8,208)(9,209)(10,210)(11,211)(12,212)(13,213)(14,214)(15,215)(16,216)(17,217)(18,218)(19,219)(20,220)(21,221)(22,222)(23,223)(24,224)(25,169)(26,170)(27,171)(28,172)(29,173)(30,174)(31,175)(32,176)(33,177)(34,178)(35,179)(36,180)(37,181)(38,182)(39,183)(40,184)(41,185)(42,186)(43,187)(44,188)(45,189)(46,190)(47,191)(48,192)(49,193)(50,194)(51,195)(52,196)(53,197)(54,198)(55,199)(56,200)(57,142)(58,143)(59,144)(60,145)(61,146)(62,147)(63,148)(64,149)(65,150)(66,151)(67,152)(68,153)(69,154)(70,155)(71,156)(72,157)(73,158)(74,159)(75,160)(76,161)(77,162)(78,163)(79,164)(80,165)(81,166)(82,167)(83,168)(84,113)(85,114)(86,115)(87,116)(88,117)(89,118)(90,119)(91,120)(92,121)(93,122)(94,123)(95,124)(96,125)(97,126)(98,127)(99,128)(100,129)(101,130)(102,131)(103,132)(104,133)(105,134)(106,135)(107,136)(108,137)(109,138)(110,139)(111,140)(112,141), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,77,173,134)(2,133,174,76)(3,75,175,132)(4,131,176,74)(5,73,177,130)(6,129,178,72)(7,71,179,128)(8,127,180,70)(9,69,181,126)(10,125,182,68)(11,67,183,124)(12,123,184,66)(13,65,185,122)(14,121,186,64)(15,63,187,120)(16,119,188,62)(17,61,189,118)(18,117,190,60)(19,59,191,116)(20,115,192,58)(21,57,193,114)(22,113,194,112)(23,111,195,168)(24,167,196,110)(25,109,197,166)(26,165,198,108)(27,107,199,164)(28,163,200,106)(29,105,201,162)(30,161,202,104)(31,103,203,160)(32,159,204,102)(33,101,205,158)(34,157,206,100)(35,99,207,156)(36,155,208,98)(37,97,209,154)(38,153,210,96)(39,95,211,152)(40,151,212,94)(41,93,213,150)(42,149,214,92)(43,91,215,148)(44,147,216,90)(45,89,217,146)(46,145,218,88)(47,87,219,144)(48,143,220,86)(49,85,221,142)(50,141,222,84)(51,83,223,140)(52,139,224,82)(53,81,169,138)(54,137,170,80)(55,79,171,136)(56,135,172,78) );

G=PermutationGroup([[(1,201),(2,174),(3,203),(4,176),(5,205),(6,178),(7,207),(8,180),(9,209),(10,182),(11,211),(12,184),(13,213),(14,186),(15,215),(16,188),(17,217),(18,190),(19,219),(20,192),(21,221),(22,194),(23,223),(24,196),(25,169),(26,198),(27,171),(28,200),(29,173),(30,202),(31,175),(32,204),(33,177),(34,206),(35,179),(36,208),(37,181),(38,210),(39,183),(40,212),(41,185),(42,214),(43,187),(44,216),(45,189),(46,218),(47,191),(48,220),(49,193),(50,222),(51,195),(52,224),(53,197),(54,170),(55,199),(56,172),(57,142),(58,115),(59,144),(60,117),(61,146),(62,119),(63,148),(64,121),(65,150),(66,123),(67,152),(68,125),(69,154),(70,127),(71,156),(72,129),(73,158),(74,131),(75,160),(76,133),(77,162),(78,135),(79,164),(80,137),(81,166),(82,139),(83,168),(84,141),(85,114),(86,143),(87,116),(88,145),(89,118),(90,147),(91,120),(92,149),(93,122),(94,151),(95,124),(96,153),(97,126),(98,155),(99,128),(100,157),(101,130),(102,159),(103,132),(104,161),(105,134),(106,163),(107,136),(108,165),(109,138),(110,167),(111,140),(112,113)], [(1,201),(2,202),(3,203),(4,204),(5,205),(6,206),(7,207),(8,208),(9,209),(10,210),(11,211),(12,212),(13,213),(14,214),(15,215),(16,216),(17,217),(18,218),(19,219),(20,220),(21,221),(22,222),(23,223),(24,224),(25,169),(26,170),(27,171),(28,172),(29,173),(30,174),(31,175),(32,176),(33,177),(34,178),(35,179),(36,180),(37,181),(38,182),(39,183),(40,184),(41,185),(42,186),(43,187),(44,188),(45,189),(46,190),(47,191),(48,192),(49,193),(50,194),(51,195),(52,196),(53,197),(54,198),(55,199),(56,200),(57,142),(58,143),(59,144),(60,145),(61,146),(62,147),(63,148),(64,149),(65,150),(66,151),(67,152),(68,153),(69,154),(70,155),(71,156),(72,157),(73,158),(74,159),(75,160),(76,161),(77,162),(78,163),(79,164),(80,165),(81,166),(82,167),(83,168),(84,113),(85,114),(86,115),(87,116),(88,117),(89,118),(90,119),(91,120),(92,121),(93,122),(94,123),(95,124),(96,125),(97,126),(98,127),(99,128),(100,129),(101,130),(102,131),(103,132),(104,133),(105,134),(106,135),(107,136),(108,137),(109,138),(110,139),(111,140),(112,141)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148),(121,149),(122,150),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158),(131,159),(132,160),(133,161),(134,162),(135,163),(136,164),(137,165),(138,166),(139,167),(140,168),(169,197),(170,198),(171,199),(172,200),(173,201),(174,202),(175,203),(176,204),(177,205),(178,206),(179,207),(180,208),(181,209),(182,210),(183,211),(184,212),(185,213),(186,214),(187,215),(188,216),(189,217),(190,218),(191,219),(192,220),(193,221),(194,222),(195,223),(196,224)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,77,173,134),(2,133,174,76),(3,75,175,132),(4,131,176,74),(5,73,177,130),(6,129,178,72),(7,71,179,128),(8,127,180,70),(9,69,181,126),(10,125,182,68),(11,67,183,124),(12,123,184,66),(13,65,185,122),(14,121,186,64),(15,63,187,120),(16,119,188,62),(17,61,189,118),(18,117,190,60),(19,59,191,116),(20,115,192,58),(21,57,193,114),(22,113,194,112),(23,111,195,168),(24,167,196,110),(25,109,197,166),(26,165,198,108),(27,107,199,164),(28,163,200,106),(29,105,201,162),(30,161,202,104),(31,103,203,160),(32,159,204,102),(33,101,205,158),(34,157,206,100),(35,99,207,156),(36,155,208,98),(37,97,209,154),(38,153,210,96),(39,95,211,152),(40,151,212,94),(41,93,213,150),(42,149,214,92),(43,91,215,148),(44,147,216,90),(45,89,217,146),(46,145,218,88),(47,87,219,144),(48,143,220,86),(49,85,221,142),(50,141,222,84),(51,83,223,140),(52,139,224,82),(53,81,169,138),(54,137,170,80),(55,79,171,136),(56,135,172,78)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4J7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28R56A···56X
order1222222244444···4777888814···1414···1428···2828···2856···56
size1111222828222228···2822244442···24···42···24···44···4

82 irreducible representations

dim11111112222222224444
type++++++++++++++-+-
imageC1C2C2C2C2C2C4D4D4D7D14D14C4×D7D28C7⋊D4D28C8⋊C22C8.C22C8⋊D14C8.D14
kernelC23.49D28C28.44D4C2.D56C2×C4⋊Dic7C14×M4(2)C2×C4○D28C4○D28C2×C28C22×C14C2×M4(2)C2×C8C22×C4C2×C4C2×C4C2×C4C23C14C14C2C2
# reps1221118313631261261166

Matrix representation of C23.49D28 in GL6(𝔽113)

100000
010000
00112000
00011200
0018010
0018001
,
11200000
01120000
00112000
00011200
00001120
00000112
,
100000
010000
00112000
00011200
00001120
00000112
,
73280000
57590000
00980360
00001121
000112150
00440150
,
8650000
80270000
00696600
00584400
0080841786
000848696

G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,18,18,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[73,57,0,0,0,0,28,59,0,0,0,0,0,0,98,0,0,44,0,0,0,0,112,0,0,0,36,112,15,15,0,0,0,1,0,0],[86,80,0,0,0,0,5,27,0,0,0,0,0,0,69,58,80,0,0,0,66,44,84,84,0,0,0,0,17,86,0,0,0,0,86,96] >;

C23.49D28 in GAP, Magma, Sage, TeX

C_2^3._{49}D_{28}
% in TeX

G:=Group("C2^3.49D28");
// GroupNames label

G:=SmallGroup(448,667);
// by ID

G=gap.SmallGroup(448,667);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,254,387,142,1123,136,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^28=c,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=a*c=c*a,a*e=e*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^27>;
// generators/relations

׿
×
𝔽